275 research outputs found

    Pressure dependence of the Shubnikov-de Haas oscillation pectrum of beta''-(BEDT-TTF)4(NH4)[Cr(C2O4)3].DMF

    Full text link
    The Shubnikov-de Haas (SdH) oscillation spectra of the beta''-(BEDT-TTF)4(NH4)[Cr(C2O4)\_3].DMF organic metal have been studied in pulsed magnetic fields of up to either 36 T at ambient pressure or 50 T under hydrostatic pressures of up to 1 GPa. The ambient pressure SdH oscillation spectra can be accounted for by up to six fundamental frequencies which points to a rather complex Fermi surface (FS). A noticeable pressure-induced modification of the FS topology is evidenced since the number of frequencies observed in the spectra progressively decreases as the pressure increases. Above 0.8 GPa, only three compensated orbits are observed, as it is the case for several other isostructural salts of the same family at ambient pressure. Contrary to other organic metals, of which the FS can be regarded as a network of orbits, no frequency combinations are observed for the studied salt, likely due to high magnetic breakdown gap values or (and) high disorder level evidenced by Dingle temperatures as large as about 7 K.Comment: To be published in European Physical Journal

    Crystal structure, Fermi surface calculations and Shubnikov-de Haas oscillations spectrum of the organic metal θ\theta-(BETS)4_4HgBr4_4(C6_6H5_5Cl) at low temperature

    Full text link
    The organic metal \theta(BETS)-(BETS)_4HgBrHgBr_4(C(C_6HH_5$Cl) is known to undergo a phase transition as the temperature is lowered down to about 240 K. X-ray data obtained at 200 K indicate a corresponding modification of the crystal structure, the symmetry of which is lowered from quadratic to monoclinic. In addition, two different types of cation layers are observed in the unit cell. The Fermi surface (FS), which can be regarded as a network of compensated electron and hole orbits according to band structure calculations at room temperature, turns to a set of two alternating linear chains of orbits at low temperature. The field and temperature dependence of the Shubnikov-de Haas oscillations spectrum have been studied up to 54 T. Eight frequencies are observed which, in any case, points to a FS much more complex than predicted by band structure calculations at room temperature, even though some of the observed Fourier components might be ascribed to magnetic breakdown or frequency mixing. The obtained spectrum could result from either an interaction between the FS's linked to each of the two cation layers or to an eventual additional phase transition in the temperature range below 200 K.Comment: accepted for publication in Solid State Science

    A stereodivergent asymmetric approach to difluorinated aldonic acids

    Get PDF
    A (bromodifluoromethyl)alkyne has been deployed in a stereoselective route to difluorinated aldonic acid analogues, in which a Sharpless asymmetric dihydroxylation reaction and diastereoisomer separation set the stage for phenyl group oxidation

    Damping of field-induced chemical potential oscillations in ideal two-band compensated metals

    Full text link
    The field and temperature dependence of the de Haas-van Alphen oscillations spectrum is studied for an ideal two-dimensional compensated metal. It is shown that the chemical potential oscillations, involved in the frequency combinations observed in the case of uncompensated orbits, are strongly damped and can even be suppressed when the effective masses of the electron- and hole-type orbits are the same. When magnetic breakdown between bands occurs, this damping is even more pronounced and the Lifshits-Kosevich formalism accounts for the data in a wide field range.Comment: 11 pages, 10 figures, to appear in PR

    Indication for the coexistence of closed orbit and quantum interferometer with the same cross section in the organic metal (ET)4(H3O)[Fe(C2O4)3].C6H4Cl2: Persistence of SdH oscillations above 30 K

    Full text link
    Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) oscillations spectra of the quasi-two dimensional charge transfer salt β\beta"-(ET)4_4(H3_3O)[Fe(C2_2O4_4)3_3]\cdotC6_6H4_4Cl2_2 have been investigated in pulsed magnetic fields up to 54 T. The data reveal three basic frequencies Fa_a, Fb_b and Fba_{b - a}, which can be interpreted on the basis of three compensated closed orbits at low temperature. However a very weak thermal damping of the Fourier component Fb_b, with the highest amplitude, is evidenced for SdH spectra above about 6 K. As a result, magnetoresistance oscillations are observed at temperatures higher than 30 K. This feature, which is not observed for dHvA oscillations, is in line with quantum interference, pointing to a Fermi surface reconstruction in this compound.Comment: published in Eur. Phys. J. B 71 203 (2009

    Analytical treatment of the dHvA frequency combinations due to chemical potential oscillations in an idealized two-band Fermi liquid

    Full text link
    de Haas-van Alphen oscillation spectrum is studied for an idealized two-dimensional Fermi liquid with two parabolic bands in the case of canonical (fixed number of quasiparticles) and grand canonical (fixed chemical potential) ensembles. As already reported in the literature, oscillations of the chemical potential in magnetic field yield frequency combinations that are forbidden in the framework of the semiclassical theory. Exact analytical calculation of the Fourier components is derived at zero temperature and an asymptotic expansion is given for the high temperature and low magnetic field range. A good agreement is obtained between analytical formulae and numerical computations.Comment: 10 pages, 4 figure

    Recent developments in the determination of the amplitude and phase of quantum oscillations for the linear chain of coupled orbits

    Full text link
    De Haas-van Alphen oscillations are studied for Fermi surfaces (FS) illustrating the model proposed by Pippard in the early sixties, namely the linear chain of orbits coupled by magnetic breakdown. This FS topology is relevant for many multiband quasi-two dimensional (q-2D) organic metals such as κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2 and θ\theta-(BEDT-TTF)4_4CoBr4_4(C6_6H4_4Cl2_2) which are considered in detail. Whereas the Lifshits-Kosevich model only involves a first order development of field- and temperature-dependent damping factors, second order terms may have significant contribution on the Fourier components amplitude for such q-2D systems at high magnetic field and low temperature. The strength of these second order terms depends on the relative value of the involved damping factors, which are in turns strongly dependent on parameters such as the magnetic breakdown field, effective masses and, most of all, effective Land\'{e} factors. In addition, the influence of field-dependent Onsager phase factors on the oscillation spectra is considered.Comment: arXiv admin note: text overlap with arXiv:1304.665

    Multiple Quantum Oscillations in the de Haas van Alphen Spectra of the Underdoped High Temperature Superconductor YBa_2Cu_3O_6.5

    Full text link
    By improving the experimental conditions and extensive data accumulation, we have achieved very high-precision in the measurements of the de Haas-van Alphen effect in the underdoped high-temperature superconductor YBa2_{2}Cu3_{3}O6.5_{6.5}. We find that the main oscillation, so far believed to be single-frequency, is composed of three closely spaced frequencies. We attribute this to bilayer splitting and warping of a single quasi-2D Fermi surface, indicating that \emph{c}-axis coherence is restored at low temperature in underdoped cuprates. Our results do not support the existence of a larger frequency of the order of 1650 T reported recently in the same compound [S.E. Sebastian {\it et al}., Nature {\bf 454}, 200 (2008)]

    Upper critical magnetic field in K0.83Fe1.83Se2 and Eu0.5K0.5Fe2As2 single crystals

    Get PDF
    The H-T phase diagrams of single crystalline electron-doped K0.83Fe1.83Se2 (KFS1), K0.8Fe2Se2 (KFS2) and hole-doped Eu0.5K0.5Fe2As2 (EKFA) have been deduced from tunnel diode oscillator-based contactless measurements in pulsed magnetic fields up to 57 T for the inter-plane (H//c) and in-plane (H//ab) directions. The temperature dependence of the upper critical magnetic field Hc2(T) relevant to EFKA is accounted for by the Pauli model including an anisotropic Pauli paramagnetic contribution (\mu_BHp=114 T for H//ab and 86 T for H//c). This is also the case of KFS1 and KFS2 for H//ab whereas a significant upward curvature, accounted for by a two-gap model, is observed for H//c. Despite the presence of antiferromagnetic lattice order within the superconducting state of the studied compounds, no influence of magnetic ordering on the temperature dependence of Hc2(T) is observed.Comment: 9 pages, 5 figures. arXiv admin note: text overlap with arXiv:1104.561

    Onecut-dependent Nkx6.2 transcription factor expression is required for proper formation and activity of spinal locomotor circuits.

    Get PDF
    In the developing spinal cord, Onecut transcription factors control the diversification of motor neurons into distinct neuronal subsets by ensuring the maintenance of Isl1 expression during differentiation. However, other genes downstream of the Onecut proteins and involved in motor neuron diversification have remained unidentified. In the present study, we generated conditional mutant embryos carrying specific inactivation of Onecut genes in the developing motor neurons, performed RNA-sequencing to identify factors downstream of Onecut proteins in this neuron population, and employed additional transgenic mouse models to assess the role of one specific Onecut-downstream target, the transcription factor Nkx6.2. Nkx6.2 expression was up-regulated in Onecut-deficient motor neurons, but strongly downregulated in Onecut-deficient V2a interneurons, indicating an opposite regulation of Nkx6.2 by Onecut factors in distinct spinal neuron populations. Nkx6.2-null embryos, neonates and adult mice exhibited alterations of locomotor pattern and spinal locomotor network activity, likely resulting from defective survival of a subset of limb-innervating motor neurons and abnormal migration of V2a interneurons. Taken together, our results indicate that Nkx6.2 regulates the development of spinal neuronal populations and the formation of the spinal locomotor circuits downstream of the Onecut transcription factors
    corecore